
Journal of  Engineering Mathematics  18 (1984) 207-217. 
© 1984 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands. 

Potential flow past a sinusoidai wall of finite amplitude 

N.L. WHITLEY 

Department of Mechanical Engineering, University of New Orleans, New Orleans, LA 70148, USA 

(Received November 30, 1983) 

Summary 

The classical regular perturbation problem of plane potential flow past a sinusoidal wall is pursued via series 
extension. Fifty terms of the series in non-dimensional wall height ¢ are produced by computer. Analysis reveals 
convergence to be limited by a branch point at c = + i. The series is recast using an Euler transformation and 
also summed using Pad6 approximants to yield accurate answers for higher real values of ¢. 

1. Introduction 

The problem of plane potential flow past a sinusoidal wall, although familiar as a classical 
perturbation problem, is one which has received little in-depth treatment in the literature. 
Kaplan [1] gave this problem its most complete treatment, having chosen it as a model 
that, regardless of its simplicity, exhibited many of the possible mathematical troubles that 
occurred in iteration procedures commonly used at that time. I have, after nearly thirty 
years, chosen the same problem for the same reasons. 

Kaplan's approach was two-pronged. He pursued the regular perturbation through 
several terms by hand calculation, and an integral-equation approach which led to a 
non-linear equation quite similar to that of Theodorsen and Garrick [2]. His conclusion 
was that the integral-equation approach was more computationally efficient and therefore 
superior. 

The advent of computers may have changed that. The regular perturbation method now 
offers an efficient and accurate solution to this problem, and whereas before, radius of 
convergence and rate of convergence could not be discussed, we now have the tools to 
analyze these properly. 

2. Solution by computer 

In terms of the complex velocity potential F = ~ + i~k and the complex variable z = x + iy,  
the problem of steady, plane, potential flow past a sinusoidal wall, y = c cos x, is: 

Find F, an analytic function of z, where 

F ~ z  as y ~ o o ,  and (2.1) 

I m ( F )  = constant on y = c cos x. (2.2) 
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Here (x, y)  are non-dimensional rectangular coordinates, q~ is the non-dimensional veloc- 
ity potential, and ff is the non-dimensional stream function. 

Equation 2.1 states that the flow tends to a free-stream far from the wall while Eqn. 2.2 
states that the wall is a streamline. 

The solution can be deduced to be of the form 

F =  z - i A  o - i E A.  e i"" (2.3) 
n~ l  

thus, 

oo 

~p = y  - A  o - ~ A. e -"y cos nx. (2.4) 
n= l  

I assume that the coefficients A, are functions of ¢ such that 

A , ~ 0  as , ~ 0 .  (2.5) 

Although Kaplan had faithfully used the method of Stokes [3], solving the problem in 
the so-called hodograph plane (q,, if), I did not. There is no physical or mathematical 
reason to believe that the solution to this problem cannot be pursued in the physical 
plane, and I found it much more computationally efficient to work there; where, through 
certain identities involving Bessel functions, the non-linearity arising due to transferring 
the boundary condition can be reduced to a cubically growing one. In the hodograph 
plane the non-linearity grows exponentially. 

It is possible to pursue some terms by hand calculation. It is found, for example, that 

~k =Y - ' ( e  -y cos x)  - ,2(1 + e -2y cos 2 x ) / 2  - ,3(e-Y cos x + 3 e -3y cos 3 x ) / 8  

- - C 4 ( - - 3  + 5 e -2y  Cos 2 x  + 8 e -4y cos  4 x ) / 2 4  

- , 5 ( 1 8  e -y cos x + 97 e -3y cos 3x + 125 e -Sy cos 5x ) /384  + 0 ( , 6 ) .  (2.6) 

A pattern may be discerned that continues in the higher-order calculations. That pattern 
dictates that 

A.(,)  ~ ^ .+2j (2.7) -~- An+ 2j.n, 
j = 0  

Substituting the above expression into Eqn. 2.4, while making use of the identity 

e-"' X o ( . , ) + 2  ( k ¢osx = - 1 )  I2k(n , )  cos kx 
k=l  

(2.8) 

where Ip is the modified Bessel function of the first kind of integer order p, defined by the 
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power series 

Ip(t)=m~ (t/2) p+z" 
= o m ! ( p + r n ) [ '  

(2.9) 

and requiring that y = ~ cos x to be the ~b = 0 streamline, results in this expression: 

E COS X = A2j ,o  ~2J 
j = l  

(m--n) /2  

+ ~ c "  ~ COSnX E 
rn= 1 n= 1,2 j=O 

n even if m even 
n odd if m odd 

^ m - n - 2 j  
A.+2j..(n/2) 

( m -  n -  2 j ) ! ( m -  n -  2 j ) !  

m--I  m--n 

"~EcmE E 
m~2 n = l  k= l , 2  

k chosen such that 
m + n + k  is even 

(-1)k(¢os(,, + k)x 

( m - n - k ) ~ 2  

+cos ( , , -  k l x ) E 
j=O 

.~.+2j,.(n/2) m-"-zj 

( ( m -  n -  k -  2 j ) / 2 ) ! ( ( m -  n + k -  2 j ) / 2 ) !  

(2.10) 

This last expression has summations nested four deep, thus the computational work is 
growing cubically with the order of E. Not many terms may be calculated by hand before 
the required effort becomes prohibitive. 

This tedious algebra was turned over to an IBM 3033 via a Fortran program consisting 
of approximately one hundred lines. In about twenty-five seconds fifty terms of this series 
were produced with coefficients in quadruple precision (32 significant figures). This 
program was actually written in two totally different ways. Both were run in single, 
double, and quadruple precision. From comparisons of these it is estimated that the 
coefficients of the fiftieth term have at least ten accurate significant figures (of the 
thiry-two computed). 

3. Analysis of coefficients 

The particular physical quantity that is analyzed is important from one point of view and 
not from another. Since this problem is truly elliptic and it is a small-disturbance 
perturbation (no stagnation points in the flow-field) the radius of convergence of any 
physical quantity near the wall should be independent of the field point (x, y)  where it is 
evaluated, i.e., when the solution breaks down it does so everywhere at the same value of c. 
This would not be the case were the problem hyperbolic or mixed or even an elliptic 
problem with stagnation points (as in thin-airfoil theory). In this view the choice of 
physical quantity is unimportant. 
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Tab le  1. Coefficients and  ratios of  a l ternat ing coefficients for series for Vma x in both non-d imens iona l  wall height 

c ( a n )  and the Euler  t r ans fo rm var iable  fl (Sn) 

n a n a n / a n - 2  Bn Bn/Sn--2 

1 1.000000000 1.0000000000 
2 0.000000000 0.000000 0.0000000000 0.000000 

3 - 0.250000000 - 0.250000 0.2500000000 0.250000 

4 0.0833333333 oo 0.0833333333 ,~ 

5 0.0989583333 - 0 . 3 9 5 8 3 3  0.0989583333 0.395833 

6 -0 . 0656250000  - 0 . 7 8 7 5 0 0  0.1010416666 1.21250 

7 -0 .0400173611  - 0 . 4 0 4 3 8 6  0.0511284722 0.516667 

8 0.0430375397 - 0 . 6 5 5 7 0 6  0.9615575397 - 1 0.951644 

9 0.0158339940 - 0 . 3 9 5 4 2 8  0.3526843843 - 1 0.689800 

10 -0 .0270352587  - 0 . 6 2 8 2 7 7  0 . 8 4 6 7 1 0 9 0 4 8 - 1  0.880562 

11 0 .5783014314-  2 - 0 . 3 6 5 4 5 8  0 . 3 0 5 6 1 6 7 7 3 7 - 1  0.866545 

12 0.1695994837 - 1 - 0 . 6 2 7 3 2 7  0.7250786108 - 1 0.856347 

13 0 . 1 6 5 3 7 1 4 9 0 4 - 2  -0 . 28596 1  0 . 2 9 6 9 0 8 7 1 6 4 - 1  0.971507 

14 - 0.1080545798 - 1 - 0.637116 0 . 6 1 6 6 5 4 3 0 6 9 - 1  0.850465 

15 -0 .2626703767  - 4  - 0.015884 0.2993352586 - 1 1.00817 

16 0 .7052585756-  3 - 0 . 6 5 2 6 8 7  0.5623962430 - 1 0.853379 

17 - 0 . 5 4 5 1 7 0 3 7 3 9 -  3 20.7549 0.3029073638 - 1 1.01193 

18 -0 .4738886795  - 2 - 0 . 6 7 1 9 3 6  0.4530686255 - 1 0.860955 

19 0 . 6825188786 -  3 - 1.25194 0 . 3 0 4 3 3 9 7 6 5 0 - 1  1.00473 

20 0 . 3286522200 -  2 - 0 . 6 9 3 5 2 2  0 . 3 9 4 6 5 3 8 6 4 0 - 1  0.871069 

21 -0 .6534041137  - 3 - 0 . 9 5 7 3 4 2  0 . 3 0 2 9 3 8 4 6 6 0 - 1  0.995396 

22 - 0 . 2 3 5 4 0 0 9 4 4 0 -  2 - 0 . 71626 1  0.3482688811 - 1 0.882467 

23 0 .5709340207-  3 - 0 . 8 7 3 7 8 4  0.2989510801 - 1 0.986838 

24 0 .1739696489-  2 - 0 . 7 3 9 0 3 5  0.3114654438 - 1 0.894325 

25 - 0 . 4 8 0 7 1 2 1 7 5 0 -  3 - 0 . 8 4 1 9 7 6  0 . 2 9 2 9 0 5 2 8 1 0 - 1  0.979777 

26 - 0 . 1 3 2 3 6 9 8 2 6 4 -  2 - 0 . 7 6 0 8 7 9  0 . 2 8 2 2 0 6 1 6 0 0 - 1  0.906059 

27 0.3992370752 - 3 - 0 . 8 3 0 5 1 1  0 . 2 8 5 3 5 2 3 7 7 2 - 1  0.974214 

28 0.1033925726 - 2 - 0 . 7 8 1 0 8 9  0 . 2 5 8 8 5 3 3 9 7 6 - 1  0.917249 

29 - 0 . 3 3 0 8 7 6 5 9 6 0 -  3 - 0 . 8 2 8 7 7 2  0 . 2 7 6 7 7 7 5 1 7 0 - 1  0.969950 

30 -0 .8263849697  - 3 - 0 . 7 9 9 2 6 9  0.2401127355 - 1 0.927601 

31 0 . 2753080756 -  3 - 0 . 8 3 2 0 5 7  0.2675771771 - 1 0.966759 

32 0 . 6737533724 -  3 - 0 . 8 1 5 3 0 2  0.2249692433 - 1 0.936932 

33 - 0 .2306865776-  3 - 0.837921 0.2580623443 - 1 0.964441 

34 - 0 . 5 5 8 7 2 3 9 7 9 8 -  3 - 0 . 82927 1  0.2126300493 - 1 0.945152 

35 0 . 1949266239 -  3 - 0 . 8 4 4 9 8 5  0.2484701488 - 1 0.962830 

36 0 . 4700968084 -  3 - 0 . 8 4 1 3 7 6  0.2024766882 - 1 0.952225 

37 -0 .1661630243  - 3 - 0 . 8 5 2 4 3 9  0.2389770321 - 1 0.961794 

38 - 0 . 4 0 0 4 5 9 0 3 9 9 -  3 - 0 . 8 5 1 8 6 5  0 . 1 9 4 0 2 7 0 0 0 2 - 1  0.958268 

39 0 . 1428700734 -  3 - 0 . 8 5 9 8 1 9  0 . 2 2 9 7 1 0 8 8 2 6 - 1  0.961226 

40 0.3447905985 - 3 - 0 . 8 6 0 9 8 8  0 . 1 8 6 9 0 5 1 8 2 9 - 1  0.963295 

41 - 0 . 1 2 3 8 4 9 8 4 1 9 -  3 - 0 . 8 6 6 8 7 0  0.2207613761 - 1 0.961041 

42 - 0 .2996136076-  3 - 0 . 8 6 8 9 7 3  0 . 1 8 0 8 1 8 4 2 5 2 - 1  0.967434 

43 0.1081793053 - 3 - 0 . 8 7 3 4 7 1  0 . 2 1 2 1 8 8 4 6 8 8 - 1  0.961167 

44 0 .2624650548-  3 - 0 . 8 7 6 0 1 2  0.1755387195 - 1 0.970801 

45 - 0 . 9 5 1 5 2 2 0 2 8 7 - 4  - 0 . 8 7 9 5 7 9  0.2040292403 - 1 0.961547 

46 -0 .2315640051  - 3 - 0 . 8 8 2 2 6 6  0 . 1 7 0 8 8 8 7 0 1 9 - 1  0.973510 

47 0 .8422817580-  4 - 0 . 8 8 5 1 9 4  0.1963033476 - 1 0.962133 

48 0.2055976165 - 3 - 0 . 8 8 7 8 6 5  0.1667306132 - 1 0 . 9 7 5 6 6 8  
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This is an appropriate place to mention the work of Bollmann [4], who has recently 
published a solution via series extension to the problem of transonic flow past a sinusoidal 
wall of finite height. This problem incorporates the mathematical complexities of being of 
mixed type. Its behavior is thus much different from the problem at hand. 

On the other hand the rate of convergence and overall behavior of the series of all 
physical quantities are not the same. Some physical quantities may be very poorly 
convergent and have power series that are ill-behaved. Therefore, from a series-analysis 
viewpoint, the choice of quantity does matter. 

The important physical quantities in this problem really only number two; the velocity 
(u, v) or equivalently the speed Q = (u 2 + 02) 1/2, and the pressure coefficient Cp (simply 
1 -  Q2). 

For the velocity components, the slowest converging quantities are the maximum and 
minimum velocities on the wall. The maximum wall velocity occurs at the field point (0, c) 
while the minimum occurs at (rr, -c ) .  These quantities are then poor candidates for 
analysis to determine radius of convergence. I prudently choose another velocity compo- 
nent to analyze, one with exceptionally good behavior. It is the x-component of the 
velocity on the wall at (rr/2, 0). The total speed may be a better choice but recall that at 
this point the y-velocity to x-velocity ratio is simply - c .  

The coefficients for the maximum fluid velocity on the wall Vmax and x-velocity of the 
fluid on the wall where the wall crosses the y = 0 plane Vmi d appear in Tables 1 and 2 

Table 2. Even coefficients and ratios of successive even coefficients (odd coefficients are zero) for series/)mid in 
nondimensional wall height c(an) and the Euler transform variable/3(8n) 

n a n a n ~ a n - - 2  Bn 6n/Bn--2 

2 - 1.00000000000 - 1.000000 -1 .0000000000~ - 1.00000 
4 0.91666666667 - 0.916667 -0.083333333333 0.083333 

6 -0.84687500000 -0.923864 -0.013416666667 0.161000 

8 0.79342757936 -0.936889 0.003177579365 -0.236838 

10 -0.75204856375 -0.947848 0.007828420380 2.46364 

12 0.71914378685 -0.956246 0.009010095099 1.15095 

14 -0.69224089948 -0.962590 0.009194952714 1.02052 

16 0.66969534154 -0.967431 0.009210782308 1.00172 

18 -0.65040579746 -0.971196 0.009342128426 1.01426 

20 0.63361865662 -0.974190 0.009677996022 1.03595 

22 -0.61880414369 -0.976619 0.01023572012 1.05763 

24 0.60557933572 -0.978628 0.01100785258 1.07543 

26 -0.59366005730 -0.980317 0.01198017081 1.08833 
28 0.58283030692 -0.981758 0.01313833948 1.09667 
30 -0.57202238449 -0.983000 0.01447005543 1.10136 

32 0.563803655235 -0.984084 0.01596543796 1.10334 

34 -0.55536749402 -0.985037 0.01761679568 1.10343 

36 0.54752699028 -0.985992 0.01941822565 1.10226 

38 -0.54021039658 -0.986637 0.02136521776 1.10027 

40 0.53335784295 -0.987315 0.02345432022 1.09778 
42 -0.52691887984 -0.987927 0.02568287523 1.09502 
44 0.52085062459 -0.988483 0.02804881723 1.09212 

46 -0.51511633981 -0.988990 0.03055052199 1.08919 

48 0.50968433348 - 0.989454 0.03318669565 1.08629 
50 -0.50452707409 -0.989881 0.0359563096 1.08345 
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respectively. Note that the coefficients for the minimum velocity on the wall are those of 
the maximum with the odd-numbered signs reversed. 

Examination of Table 1 reveals an asymptotic pattern of signs (+  + - - )  which 
indicates a complex conjugate pair of singularities on the imaginary axis of ~. Such a sign 
pattern is modelled by the simple function (1 + b~ + c ~ 2 ) / ( 1  + c 2) = 1 + b~ - (1 - c)c 2 - 
bc 3 + (1 - c)c 4 + bc 5 + ... My solution should not be stopped short of the wall of infinite 
amplitude by any physics we have neglected. It is common to encounter mathematical 
singularities on the negative real axis of some physical parameter (low-Reynolds-number 
expansions, for instance). But here the only acceptable singularities are mathematical ones 
lying off the real axis, for the negative real axis simply represents a phase shift of the wall. 
And the singularities must be in complex conjugate pairs to make the coefficients real. 

I proceed using methods popularized by Gaunt and Guttmann [5], Van Dyke [6] and 
others. Consider a function: 

f ( , )  = ~ a . , "  (3.1) 
n=0 

where f has a complex conjugate pair of singularities on the imaginary axis and is of the 
form 

f ( , )  = K(1 + b, + c,2)(,~ + ,2) ~ (singularity at + i%). (3.2) 

Then the behavior of the ratio R of successive odd or successive even coefficients as 
n ~  oo is 

a 2 .  a 2 n +  1 Z I ( 1  a + l )  (3.3) 
C/2n_ 2 a 2 n _  1 ~ 2 0 FI " 

I hypothesize that this result would be true regardless of the nature of the part of f (c)  
which is analytic at c = _+ i%. 

The ratio of every other coefficient was computed and also appears in Tables 1 and 2. 
It can be seen that these ratios are, at least asymptotically, fairly well-behaved. I have 
plotted in Fig. 1 the absolute value of these ratios for Vma x versus 1/n as suggested by 
Domb and Sykes [7], thereby having a graphical representation of what the radius of 
convergence might be. It suggests that c o = 1.00. 

Table 2 shows clearly that the series for Vmi d is much better behaved. The pattern of 
signs establishes itself immediately (+  0 -  0). This, too, is an indication of a complex 
conjugate pair of singularities on the imaginary axis of ~. The model function used before 
easily produces this result by setting b equal to zero. The ratio a,,/a,,_ 2 is seen to 
monotonically approach - 1.00 after the first term. The Domb-Sykes plot, Fig. 2, of these 
ratios also strongly suggests a radius of convergence of 1.00. I can refine this guess of the 
radius of convergence by fitting successive polynomials in 1/n to the ratios. This is easily 
done through the formation of a Neville table (Gaunt and Guttmann [5]). The lower 
left-hand portion of this table appears in Table 3. It confirms that the radius of 
convergence is 1.00 to within three decimals. 

It is also possible from considerations of the Domb-Sykes plots, Figs. 1 and 2, to 
estimate the nature of the nearest singularity. For/)max the Domb-Sykes plot suggests that 
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Figure 1. Graphical ratio test of Domb and Sykes applied to successive even (©) and successive odd (z~) 
coefficients of series for Vma x. 

the exponent a is approximately 1.70, while Fig. 2 suggests that a for Vmi a is approximately 
-0 .75 .  That these two are different is somewhat surprising. One might expect that the 
nature of the nearest singularity does not change with the field point just as the radius of 
convergence does not change. But I can cite no reason why this must be so and after much 
thought have abandoned my stand that it must be. 

Another estimate of the radius of convergence can be g~ained by the formation of 
near-diagonal Pad6 approximants (Baker [8]). These appr0ximants perform analytic 
continuation by picking out any poles of the function and by placing a line of poles along 
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Figure 2. Graphical ratio test of Domb and Sykes for series for Vmi d. (odd coefficients are zero). 
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what would be a branch cut. Examination of poles of the three near-diagonal approxi- 
mants for Vma x reveals a branch cut emanating from e = + i and extending away from c = 0 
slightly to the negative real side of the imaginary axis. A similar procedure for vmi d also 
reveals a branch cut. In the (2 plane, it emanates from - 1 and extends outward along the 
negative real axis. Thus in both cases branch cuts are suggested and there seems to be no 
other singularities in the nearby complex plane. 

I take the radius of convergence to be 1.00 for all fluid velocities on the wall. This is 
somewhat higher than what Kaplan had suspected which was approximately 0.7. 

Two methods of accelerating convergence and extending the usefulness of series were 
used. First, the Pad6 approximants can be used to sum the series. Insofar as the three 
computed near-diagonal Pad6 approximants agreed to the fourth decimal place they were 
taken as accurate. Values of the fluid wall speed at thirty stations between x = 0 and x = ~r 
were computed in this way. (The flow is symmetric about x = ~r.) The wall pressure 
coefficient was then calculated from this result. These two quantities for c = 0.25, 0.50, 
0.75, 1.00, and 1.25 appear in Figs. 3 and 4. 

Second, an Euler transformation of c 2 was used to extend and improve the two series 
for fluid velocities. The transformation is 

~2 
# 2  = _ _  (3.4) 

l + c  2 '  

so that 

(3.5) 
V ~ - + c  2 

and 

fl (3.6) 

The series become 

F =  
oo 

8 .#" .  (3.7) 
n = 0  

Table 3. Bottom left-hand corner of Neville table for reciprocal square of the radius of convergence 1/c 2 for vmi d 

n Linear fit Quadratic Cubic Quartic Quintic 

40 1.0001972 0.9999772 1.0000325 0.9999914 0.9999611 
42 1.0001769 0.9999839 1.0000241 0.9999886 0.9999795 
44 1.0001598 0.9999885 1.0000177 0.9999892 0.9999912 
46 1.0001452 0.9999917 1.0000131 0.9999911 0.9999979 
48 1.0001326 0.9999945 1.0000138 1.0000173 1.0001168 
50 1.0001215 0.9999940 0.9999900 0.9998650 0.9992557 
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Table 4. Last eight partial sums for v,,ax and Omi d with c = 1.25 

t/ Vma x t/ Vmi d 

41 2.028702677 36 0.3585493750 

42 2.028703234 38 0.3585511438 

43 2.028703744 40 0.3585523278 

44 2.028704073 42 0.3585531128 

45 2.028704372 44 0.3585536447 

46 2.028704568 46 0.3585539943 

47 2.028704743 48 0.3585542259 

48 2.028704859 50 0.3685543790 

The coefficients 8, and the ratios of alternating coefficients for Vma x and /)mid appear in 
Tables 1 and 2 respectively. The ratios now suggest a radius of convergence of 1.00. Thus 
the Euler transformation has successfully extended the usefulness of both series to the 
whole real axis of c. 

Using these transformed series /)m~x and Vmi d can be accurately calculated for ~ up to 
1.25 and higher. Table 4 shows the last eight partial sums for /)m~x and /)mid with c = 1.25. 
The convergence is monotonic and rapid. It can be seen that at a value of c = 1.25, the 
maximum wall speed is about 2.028704 times the free-stream speed. 

Table 5 shows/)m~x and Umi d for various values of ~ up to 1.25 as calculated by both the 
Euler transformation and by Pad6 approximants.  The agreement is excellent for all c 
which gives me confidence in all calculations. 

It  can be seen in Fig. 3 that with c = 1.25 the maximum speed is twice the free-stream 
speed and the minimum speed is less than fifteen percent of it. The corresponding graph 
of Cp in Fig. 4 shows a very large gradient in pressure between x = 0 and ~r. This, of 
course, is an adverse gradient and any fluid viscosity would undoubtedly cause the flow to 
separate in this region. 

4. Discussion 

For  this problem of plane potential flow there cannot be a bet ter  way to solve it than by 
the extension and analysis of the small-disturbance perturbation. The method is computa- 
tionally efficient, especially when pursued in the physical plane. The series can be 
analyzed and their usefulness extended to walls of finite height by methods of analytic 
continuation. 

Table 5. t3ma x and Vima as computed by Pad6 sums and by Euler transformed series 

/)max /)mid 

Pad6 sum Last partial sum Pad6 sum Last partial  sum 

1.25 2.028705281 2.028704859 0.3585546709 0.3585543790 

1.00 1.864499528 1.864499524 0.4782200490 0.4672200477 

0.75 1.681522381 1.681522381 0.6287056789 0.6287056789 
0.50 1.475886296 1.475886295 0.7965676465 0.7965676465 
0.25 1.246498136 1.246498135 0.9408854330 0.9408854334 
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The success of  this work suggests new work in some areas. It would be worthwhile to 
pursue this question of the nature of the nearest singularity, whether it does change with 
location on the wall. To conclude that it does change will be an important  result for this 
developing technique of series extension. It would also be of value to know something of  
the solution in the vicinity of the wall apex as the wall height becomes very large. Such a 
solution would be useful in a real fluid situation on the side with the favorable pressure 
gradient. These two questions may be pursued through the calculation of additional terms 
in the series. 

Another  related problem that could be pursued through small-disturbance perturbat ion 
is that of three-dimensional potential flow over a doubly-periodic wall. This problem 
offers many  facets because of the oppor tuni ty  to change the orientation of the free stream 
as well as the ratio of wall wavelengths. It is of  slight additional difficulty over the plane 
case when pursued via series extension in the physical plane. But it cannot  be pursued in a 
hodograph  plane and an integral-equation approach should prove to be cumbersome.  
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